Feature dimension reduction using reduced-rank maximum likelihood estimation for hidden Markov models

نویسنده

  • Don X. Sun
چکیده

This paper presents a new method of feature dimension reduction in hidden Markov modeling (HMM) for speech recognition. The key idea is to apply reduced rank maximum likelihood estimation in the M-step of the usual Baum-Welch algorithm for estimating HMM parameters such that the estimates of the Gaussian distribution parameters are restricted in a sub-space of reduced dimensionality. There are two main advantages of applying this method in HMM: 1) feature dimension reduction is achieved simultaneously with the estimation of HMM parameters, therefore it guarantees that the likelihood function is monotonically increasing; 2) it requires very little extra computation in addition to the standard Baum-Welch algorithm, hence it can be easily incorporated in the existing speech recognition systems using HMMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal rank likelihood as an optimization function for speech recognition

Research has shown that rank statistics derived from contextdependent state likelihood can provide robust speech recognition. In previous work, empirical distributions were used to characterize the rank statistics. We present parametric models of the state rank and the rank likelihood, and then based on them, present a new objective function, Maximal Rank Likelihood (MRL), for estimating parame...

متن کامل

Optimal linear feature transformations for semi-continuous hidden Markov models

Linear discriminant or Karhunen-Lo eve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a Maximum-Likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slig...

متن کامل

Maximum-likelihood estimation for hidden Markov models

Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...

متن کامل

SELECTIVE TRAINING FOR HIDDEN MARKOVMODELS with APPLICATIONS to SPEECHCLASSIFICATIONbyLevent

Traditional maximum likelihood estimation of hidden Markov model parameters aims at maximizing the overall probability across the training tokens of a given speech unit. Therefore, it disregards any interaction and biases across the models in the training procedure. Often the resulting model parameters do not result in minimum error classiication in the training set. A new selective training me...

متن کامل

Spectral Estimation of Hidden Markov Models

This thesis extends and improves methods for estimating key quantities of hidden Markov models through spectral method-of-moments estimation. Unlike traditional estimation methods like EM and Gibbs sampling, the set of estimation methods, which we call spectral HMMs (sHMMs), are incredibly fast, do not require multiple restarts, and come with provable guarantees. Our first result improves upon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996